

Techniken der zeitaufgelösten Laserspektroskopie

Jürgen G. Müller Lehrstuhl für Photonik und Optoelektronik Ludwig-Maximilians-Universität München

Übersicht

- Erzeugung kurzer Laserpulse
- Nichtlineare Effekte
- Zeitauflösung durch schnelle Elektronik: Zeitkorreliertes Einzelphotonenzählen
- Zeitauflösung durch Abfragen mit Laserpuls: Pump-Probe Experimente
- Zusammenfassung

Erzeugung und Verstärkung der fs-Pulse

passiv modengekoppelter Ti:Sa - Laser und regenerativer Verstärker

Nichtlineare Effekte

Linearer Kerreffekt

$$n = n(E) = n_0 + a E + \dots$$

• Weißlichterzeugung

Frequenzmischung

$$P = \mathbf{e}_0 (\mathbf{c}^{(1)} \mathbf{E} + \mathbf{c}^{(2)} \mathbf{E}^2 + ...)$$

Erzeugung der

1

- zweiten Harmonischen (SHG)
- Summenfrequenz
- Differenzfrequenz

Optisch parametrischer Verstärker

• Durchstimmbar von 300 nm - 2000 nm

Zeitkorreliertes Einzelphotonenzählen

Lumineszenzmessungen

Zeitaufgelöste Lumineszenz am Polymer LPPP

gemessen mit zeitkorreliertem Einzelphotonenzählen

Stimulierte Emission in Polymeren

Was ist die Dynamik des Ladungstransfers?

Pump - Probe Experimente

z.B. stimulierte Emission in Polymeren

• Schneller Ladungstransfer zum C₆₀

Aufkonversion

 $I_{Summe} \propto I_{Lumineszenz}(I_{PM}) \cdot I_{Gate}$

Aufkonversion

zeitaufgelöste Lumineszenzmessungen

Aufkonversion

zeitaufgelöste Lumineszenzmessungen an LPPP (rein)

Zusammenfassung

Pulse (τ=100 fs)	Meßmethode
82 MHz • 700-900 nm, 10 nJ • 400 nm, 5 nJ	 (zeitkorreliertes) Einzelphotonenzählen Auflösung ca. 50 ps Pump-Probe Auflösung pulsbreitebegrenzt
<i>1 kHz</i> ● 800 nm, 1 mJ	Pump-Probe

- 300 nm 2000 nm, ca. 10 μJ
 Woißlightkontinuum
- Weißlichtkontinuum

 Optische Gating-Technik: Aufkonversion